

CÓDIGO ASIGNATURA 1131-2

DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas

Proceso Software

ASIGNATURA: Proceso Software

1. OBJETIVOS

Marco referencial

El rol del curso "Proceso Software" es el de crear en los futuros profesionales las habilidades necesarias para desenvolverse adecuadamente en las problemáticas relacionadas con los aspectos de participación y dirección de proyectos de software. En este sentido en el curso se estudian los diferentes modelos de proceso de desarrollo de software y se relacionan sus características con el contexto global en que el mismo se desarrolla, tanto en lo que se refiere a las propiedades del software (confiabilidad, complejidad, disponibilidad, usabilidad, etc.) como a las particularidades de la organización en que se instalará y del grupo de desarrollo.

Objetivos

Una vez aprobado el curso el alumno estará en condiciones de:

Objetivo General

Seleccionar y aplicar una estrategia de desarrollo de software incluyendo la definición de indicadores o métricas para su evaluación.

Objetivos específicos

- Definir los puntos de control de un proyecto de software.
- Aplicar los controles definidos.
- Definir las características de los documentos y artefactos a producir.
- Definir los mecanismos de seguimiento y evolución de los documentos y artefactos.
- Aplicar normas de calidad al proceso y al producto.

2. CLASIFICACIÓN DE LA ACTIVIDAD CURRICULAR, FORMACIÓN PRÁCTICA Y CARGA HORARIA

	Carga horaria en horas reloj
Bloque de Ciencias Básicas	
Bloque de Tecnologías Básicas	
Bloque de Tecnologías Aplicadas	128
Bloque de Complementarias	
Otros Contenidos	
Carga horaria total de la actividad curricular	

2.2

Disciplina	Carga Horaria
Matemática	
Física	
Química	
Sistemas de representación y fundamentos de informática	
Biología	
Otros (ciencia de la tierra, geología, etc.)	
Total	

2.3

Formación Práctica							
Formación Experimental	Resolución de pro- blemas de ingeniería	Actividades de proyecto y diseño	Práctica profesional supervisada	Total			
·	16	64		80			

2.4

Carga horaria semanal	8
Carga horaria semanal dedicada a la formación práctica	5

3. CONTENIDOS

CONTENIDOS MÍNIMOS:

El concepto de proceso software. Modelización del proceso software: concepto y enfoques. Modelos de proceso software: modelos descriptivos y prescriptivos. Análisis y evaluación de los distintos modelos de proceso software tradicionales (PRISM, IEEE, ALF, SOCCA, Unified Process). Metodologías Ágiles de construcción (XP, SCRUM). Análisis de estándares para procesos específicos en la gestión, desarrollo y soporte del proceso software. El ambiente socio-cultural del proceso software. Competencias conductuales de las personas. Roles y Capacidades del proceso. Metodologías de construcción de sistemas convencionales. Metodologías de construcción de sistemas basados en conocimientos. Convergencia de la Ingeniería del Software y la Ingeniería del Conocimiento.

Principios de Calidad de Software. Calidad de Producto y Calidad de Proceso. Control, Gestión y Garantía de Calidad. Normas y estándares Internacionales de Calidad (Normas ISO/IEC 15504, ISO/IEC 9001). Modelos de Madurez (CMMI, SPICE). Mejora de los Procesos. Evaluación de Organizaciones. Conceptos de Mejora. Gestión de Planes de Mejora. Técnicas y metodología sobre madurez del proceso. Proceso de Certificación. Auditorías. Herramientas para le Gestión de Calidad del Software.

PROGRAMA ANALÍTICO:

Unidad 1- Modelos de Proceso

El concepto de proceso software. Modelización del proceso software: concepto y enfoques. Marco de trabajo del proceso. Modelos de proceso software: modelos descriptivos y prescriptitos. El Modelo Lineal Secuencial y sus adaptaciones. El Modelo de Construcción de Prototipos. Uso de prototipos en el diseño de interfaces. Modelos Evolutivos: modelo incremental, modelo iterativo y modelo espiral. Modelos de Transformación formal y de Especificación Operacional. Modelo de Reutilización de Componentes. Metodologías Ágiles de construcción (XP, SCRUM). Paradigma de Desarrollo Dirigido por Modelos. Análisis y evaluación de los distintos modelos de proceso software tradicionales (PRISM, IEEE, ALF, SOCCA, Unified Process). Análisis de estándares para procesos específicos en la gestión, desarrollo y soporte del proceso software.

Unidad 2- Gestión de Configuración de Software

Planeamiento y control de Proyectos. Gestión de configuración: hitos de configuración, elementos de Configuración del Software. Líneas base. Control de versiones. Control de cambios. Informes de estado. Auditoría. Estándares. Trazabilidad de los elementos de configuración.

Unidad 3- Calidad del Software y del Proceso de Software

Principios de Calidad de Software. Calidad de Producto y Calidad de Proceso. Atributos de calidad. Control, Gestión y Garantía de Calidad. Plan de Aseguramiento de la Calidad. Normas y estándares Internacionales de Calidad (Normas ISO/IEC 15504, ISO/IEC 9001). Medición y métricas del software. Proceso de medición. Integración de métricas al proceso software. Revisiones técnicas. Inspecciones de software. Revisiones de progreso. Modelo de Madurez (CMMI, SPICE). Niveles de madurez. Áreas clave del proceso.

Unidad 4- Mejora de los Procesos

Características del proceso. Técnicas de análisis y modelado de procesos. Mejora de los Procesos. Medición del proceso. Paradigma Goal-Question-Metric. Evaluación de Organizaciones. Conceptos de Mejora. Gestión de Planes de Mejora. Técnicas y metodología sobre madurez del proceso. Clasificación del proceso. Proceso de Certificación. Auditorías. Herramientas para le Gestión de Calidad del Software. Gestión de Riesgos.

El ambiente socio-cultural del proceso software. Competencias conductuales de las personas. Roles y Capacidades del proceso.

Unidad 5- Gestión del Conocimiento en la Ingeniería de Software

Ingeniería del Conocimiento. Gestión del Conocimiento. Conocimiento organizacional. Ontologías. Sistemas Expertos. Representación del Conocimiento. Procesar conocimiento. Metodologías de construcción de sistemas convencionales. Metodologías de construcción de sistemas basados en conocimientos. Convergencia de la Ingeniería del Software y la Ingeniería del Conocimiento.

4. BIBLIOGRAFÍA

Título	Autor(es)	Editorial	Año Edición	Ejemplares disponibles en UNLaM
		Pearson Educa-		
Ingeniería del Software	Sommerville, I.	ción	2005	
		Pearson Educa-		
Ingeniería del Software	Sommerville, I.	ción	2002	6
Ingeniería del Software: un enfo-				
que práctico	Pressman, R.S.	McGraw-Hill	2010	
Managing the software process	Humphrey, W.	Addison-Wesley	1989	5

Bibliografía proveniente de artículos de revista y páginas web:

- SWEBOK Guide to the Software Engineering Body of Knowledge: 2004 Version, IEEE Computer Society, Pierre Bourque y Robert Dupuis (eds), ISBN 0-7695-2330-7, 2005, http://www.computer.org/portal/web/swebok/
- "Impacts of life cycle models on software configuration management", Davis, A., Bersoff, E.H., Communications of the ACM, ACM Press, Nueva York, Vol. 34, Issue 8, Agosto 1991, pp.104-118.
- "Capability Maturity Model Integration", Software Engineering Institute, CMMI-DEV v1.2, CMU/SEI-2006-TR-008, Carnegie Mellon University, 2006, http://www.sei.cmu.edu/cmmi/

Bibliografía complementaria:

- Cockburn, A., "Agile Software Development: the cooperative game", Addison-Wesley Professional, 2º edición, ISBN: 978-0321482754, 2006.
- Babich, W., "Software Configuration Management", Addison-Wesley, 1986.
- Fagan, M.E., "Design and Code Inspections to reduce Errors in Program Development", IBM Systems Journal, Vol.15, No3, 1976, pp.182-211.

5. DESCRIPCIÓN DE ACTIVIDAD CURRICULAR

5.1) MODALIDAD DE ENSEÑANZA EMPLEADA

La modalidad de enseñanza que se utilizará será fundamentalmente práctica y de investigación y desarrollo por parte de los alumnos. La introducción teórica a cargo de los docentes se concentrará en la primera parte del curso y se desarrollará en unas pocas semanas. Una vez que los alumnos reciban las consignas correspondientes a su grupo, la metodología de enseñanza se vuelca totalmente al apoyo de los alumnos para la concreción del trabajo asignado.

Durante la parte inicial del cuatrimestre se revisarán los diferentes ciclos de vida del software, con un espíritu crítico procurando resaltar su esencia y sus principios, de manera que en las restantes actividades del curso se preserven las mismas.

En el resto del curso, a cada grupo de alumnos (de 2 o 3 integrantes) se le asignará un modelo de proceso y se le dará como consigna el proponer una heurística respecto a temas de Gestión de Configuración, Control de Calidad o Mejora de Procesos que se aplique apropiadamente al modelo de proceso. A partir de este momento la actividad se concentrará en la discusión de las propuestas de los alumnos. Las últimas semanas del curso estarán destinadas a presentaciones realizadas por grupos de alumnos de los resultados de su actividad.

5.2) MATERIALES DIDÁCTICOS NECESARIOS

La materia dispondrá de apuntes propios desarrollados por los profesores de la misma. También se utilizará material adicional que complementará los contenidos (ver Bibliografía).

Las clases se desarrollarán en un laboratorio de computación, donde se requerirán materiales físicos simples: computadoras con acceso a Internet, procesador de texto, generador de presentaciones. Para algunas clases teóricas se requerirá el uso de cañón, también para la exposición final de trabajos que realizarán los alumnos.

6. EVALUACIÓN

Se evaluarán los Trabajos Prácticos por grupo pero los docentes generarán una nota de concepto en relación al trabajo individual del alumno (asistencia, participación en clase, defensa del trabajo práctico presentado). Cada trabajo será corregido y devuelto al grupo para su re-entrega de ser necesario. Por consiguiente para aprobar la materia, el alumno deberá tener todos los Trabajos Prácticos aprobados.

Se considera que la aprobación de todos los trabajos prácticos implica que el alumno ha debido adquirir los conocimientos teórico-prácticos necesarios para cumplir los objetivos de la asignatura.

Régimen de promoción:

Para que el alumno promocione la materia, todos sus Trabajos Prácticos deberán estar aprobados con una calificación de siete o superior. El docente deberá tener su nota de concepto y el alumno deberá haber entregado al finalizar el cuatrimestre su carpeta final con todos los trabajos prácticos y haber realizado su exposición del tema a desarrollar pudiéndolo justificar satisfactoriamente.

7. COMPOSICIÓN DEL EQUIPO DOCENTE ACTUAL

7.1 Responsable a cargo de la actividad curricular:

Graciela D. S. Hadad

7.2) PROFESORES

				Dedicación en
	Grado académico	Cargo		horas semanales al
Apellido y Nombre	máximo	Docente	Situación	cargo
HADAD, Graciela	Doctora	Asociado	Interino	8
KAPLAN, Gladys	Licenciada	Adjunto	Interino	8

Cantidad total de profesores: 2

7.3) AUXILIARES GRADUADOS

,								
			Dedicación en horas semana-					
Apellido y Nombre	Grado académico máximo	Cargo Docente	les al cargo					
HINDI, Guillermo	Ingeniero	Ayudante	8					
MOURIZ, Marcia	Ingeniera	Ayudante	8					
SANABRIA, Rosa	Ingeniera	Ayudante	8					

Cantidad total de auxiliares: 3

7.4) AUXILIARES NO GRADUADOS

111/110711211111201100111112011200								
	Dedicación							
	Menor o igual Entre 10 y Entre 20 y Entre 30 y Igual o mayor							
	a 9 horas	19 horas	29 horas	39 horas	a 40 horas	Total		
Auxiliares no Graduados								
Otros								

		Designación						
	Reg	gulares	Int	erinos	Contratados			
	Rentados	Ad Honorem	Rentados	Ad Honorem	Rentados	Total		
Auxiliares no graduados								
Otros								

8. ALUMNOS

C: Cursantes por primera vez

R: Recursantes

8.1) TOTAL DE ALUMNOS QUE CURSARON LA ACTIVIDAD CURRICULAR

Año	20	2002		2003		2004		05
	С	R	С	R	С	R	С	R
Inscriptos								
Aprobaron la cursada								
Promocionaron								

Año	2006		2007		2008		2009	
	С	R	С	R	С	R	С	R
Inscriptos								
Aprobaron la cursada								
Promocionaron								

8.2) Alumnos que cursaron la asignatura discriminados por carrera (si corresponde)

Denominación de la carrera	Plan de Estu- dios	2002	2003	2004	2005	2006	2007	2008	2009
Ing. Informática									
Ing. Electrónica									
Ing. Industrial									

8.3) TOTAL DE ALUMNOS INVOLUCRADOS EN EXÁMENES FINALES

AÑO	2002	2003	2004	2005	2006	2007	2008	2009
Alumnos que rindieron final								
Aprobaron								

8.4) Alumnos que rindieron la asignatura discriminados por carrera (si corresponde)

1100001140									
Denominación de la carrera	Plan de Estudios	2002	2003	2004	2005	2006	2007	2008	2009
Ing. Informática									
Ing. Electrónica									
Ing. Industrial									

9. CANTIDAD DE COMISIONES

Turno	Cantidad de Comisiones	Promedio alumnos por comisión
Mañana		
Tarde		
Noche		

10. SUFICIENCIA Y ADECUACION DE LOS ÁMBITOS

11. INSCRIPCIÓN Y PROMOCIÓN DE ALUMNOS

12. EVALUACIÓN CAPACIDAD DE CÁTEDRA

13. ACCIONES, REUNIONES, COMISIONES

14. CALENDARIO DE ACTIVIDADES

Semana de Clase	

INFORMACIÓN PROPIA CÁTEDRA

- 15. REUNIOINES DE CÁTEDRA (2 X AÑO)
- 16. GUIAS DE TP (TODAS)
- 17. APUNTES ELABORADOS POR LA CÁTEDRA
- 18. EJEMPLOS DE TP DE LOS ALUMNOS
- 19. EJEMPLOS DE PARCIALES TOMADOS
- 20. PRÁCTICA FORMACIÓN EXPERIMENTAL
- 21. PRÁCTICA RESOL. PROBL. ING.
- 22. PRÁCTICA PROYECTO Y DISEÑO
- 23. PRÁCTICA SUPERV. EN SECT. PRODUCTIVOS

24. DOCENTES AFECTADOS A INVESTIGACIÓN

Apellido y Nombre del Docente	Tipo de Proyecto	Cod. De Pro- yecto asigna- do por el DIIT	Nombre del Proyecto	Fecha de Inicio	Fecha de Finalización
KAPLAN, Gladys	PICD	55/C097	Consolidación de Requisitos	01-01-2009	31-12-2011
HADAD, Graciela	PICD	55/C097	Consolidación de Requisitos	01-01-2009	31-12-2011

25. ACLARACIÓN, CARGO Y FECHA

"Certifico que el presente programa de estudios de la asignatura Proceso Software es el vigente para el ciclo lectivo 2010, guarda consistencia con los contenidos mínimos del plan de estudios y se encuentra convenientemente actualizado"

Firma Aclaración: Graciela D. S. Hadad Cargo: Jefe de Cátedra Fecha: 20/10/10