Carrera INGENIERIA EN ELECTRONICA			
Asignatura [3735]- [Integración	Tecnológio	a IV]	
Trayecto: Integración Técnológi	ica		
Año académico 2023			
Responsable / jefe de cátedra Ing. Ignacio Zaradnik			
Carga horaria semanal 4hs	Carga horaria total 64hs Créditos		Créditos
Modalidad: Presencial			
Correlativas anteriores: [3729] Correlativas posteriores: no tiene			
Conocimientos necesarios			

	Equipo d	locente
Nombre	Cargo	Titulo
Ignacio Zaradnik	Adjunto	Ingeniero en Electrónica
Isabel Marko	Asociado	Ingeniero en Electrónica
Rodrigo Spano	Ayudante Graduado	Ingeniero en Electrónica

Descripción de la asignatura

En el dictado de la asignatura busca consolidar los temas visto durante la carrera y darle una mayor vinculación al proyecto integrador que deben realizar los alumnos. Para esto se plantearán los contextos normativos de distintos tipos de aplicaciones; se compararán tecnologías de procesamiento, de comunicaciones e implementaciones de circuitos en general; se presentarán herramientas para mejorar los desarrollos; se introducirá en el desarrollo de interfaces de software; se profundizará en aspectos de diseño de circuitos impresos y se detallará los elementos necesarios para realizar una redacción científica.

Metodología de enseñanza

Tratándose de una materia que entre sus objetivos tiene la consolidación de los temas visto durante la carrera con el fin de facilitar el desarrollo del proyecto integrador se emplearan distintas metodologías. En lo que respecta a los contenidos de las unidades 1 a 3 será según una metodología tradicional basada en: Clases de exposición teórica por parte del docente a cargo del curso, apoyadas con proyección de diapositivas, pizarrón, hojas de datos, notas de aplicación de fabricantes de circuitos integrados, etc. En lo que respecta a las unidades 4 a 7 a las clases de exposición teórica se le sumaran laboratorios prácticos y/o talleres según el tema a tratar.

La catedra definirá trabajos a llevar a cabo por el alumno o grupo de ellos, dichos trabajos tendrán relación directa con el proyecto de final de carrera seleccionado en "Gestión de Proyecto" y el cual deberá ser finalizado en "Proyecto integrador". Asociado a estos trabajos, está previsto disponer de clases para controlar los avances, de esta forma se acompañará a los alumnos en el desarrollo.

Objetivos de aprendizaje

- Integrar y articular el conocimiento y habilidades de las distintas áreas y materias adquiridas durante la carrera
- Evaluar distintas soluciones tecnológicas para el armado del proyecto.
- Diseñar y construir el Hardware, Firmware y Software
- Introducir a los alumnos redacción científica
- Trabajar en equipo
- Adquirir habilidades para la presentación oral

Contenidos mínimos

Contexto normativo para aplicaciones de electrónica

Comparativa entre arquitecturas y tecnologías de procesamiento digital.

Tecnologías de comunicación

Integración de circuitos analógicos y dispositivos digitales

Consideraciones sobre sistemas embebidos

Diseño básico de interfaces de software para aplicaciones de electrónica

Diseño avanzado de circuitos impresos

Técnicas y herramientas para la fabricación de dispositivos electrónicos

Ensayos de validación de dispositivos electrónicos

Escritura científica

Competencias a desarrollar

Genéricas

Identificación, formulación y resolución de problemas de ingeniería electrónica.

Concepción, diseño y desarrollo de proyectos de ingeniería electrónica.

Gestión, planificación, ejecución y control de proyectos de ingeniería electrónica.

Utilización de técnicas y herramientas de aplicación en la ingeniería electrónica

Generación de desarrollos tecnológicos y/o innovaciones tecnológicas.

Desempeño en equipos de trabajo.

Comunicación efectiva.

Actuación profesional ética y responsable.

Evaluación y actuación en relación con el impacto social de su actividad profesional en el contexto global y local

Aprendizaje continuo.

Especificas

Proyecto, diseño y cálculo de sistemas, equipos y dispositivos de generación, transmisión y/o procesamiento de campos y señales analógicos y digitales; circuitos integrados; hardware de sistemas de cómputo de propósito general y/o específico y el software a él asociado; hardware y software de sistemas embebidos y dispositivos lógicos programables; sistemas de automatización y control; sistemas de procesamiento y de comunicación de datos y sistemas irradiantes.

Planteo, interpretación, modelado, implementación, resolución, análisis y síntesis de circuitos y sistemas electrónicos

Diseño, proyecto y cálculo de circuitos y sistemas digitales.

Diseño, proyecto y cálculo de circuitos y sistemas para la generación, recepción, transmisión, procesamiento y conversión de campos y señales para sistemas de comunicación.

Diseño, proyecto y cálculo de circuitos y sistemas electrónicos aplicados a la generación, manejo, amplificación, procesamiento, instrumentación y acondicionamiento de energía eléctrica y señales de distinta naturaleza.

Proyecto, dirección y control de la construcción, implementación, mantenimiento y operación de circuitos y sistemas digitales y analógicos de: a) generación, recepción, transmisión, procesamiento y conversión de campos y señales, b) de comunicación, c) de control y d) circuitos y sistemas electrónicos aplicados a la generación, manejo, amplificación, procesamiento, instrumentación y acondicionamiento de energía eléctrica y señales de distinta naturaleza.

Proyecto y dirección de lo referido a la higiene y seguridad en la actividad profesional de acuerdo con la normativa vigente y los procedimientos de validación y certificación de su funcionamiento, condición de uso o estado.

Programa ana	lítico
Unidad 1	Normativa Normas y normalización; Definición de norma; Ventajas de la normalización; Normas para el estilo para el uso de magnitudes físicas, unidades de medida y fórmulas que las involucran, en documentos de carácter científico o educativo a nivel mundial; Normas asociadas a seguridad eléctrica, Normas asociadas a compatibilidad electromagnética; Normas IPC para el diseño de circuitos impresos; Otras normativas.
Unidad 2	Tecnologías para los dispositivos electrónicos Comparativa entre microcontroladores y microprocesadores; Arquitecturas de procesadores ARM; Ventajas de un procesador digital de señales (DSP) con respecto a arquitecturas generales; Diferencias entre FPGAs y ASCIs; Comparativa de tecnologías de comunicación en función del alcance y el ancho de banda; Tecnologías celulares; Tecnologías de espectro ensanchado; Tecnologías de red de área local; Tecnología RFID; Otras tecnologías de comunicación.
Unidad 3	Integración de circuitos analógicos y dispositivos digitales Planteo de diagrama en bloque de dispositivos electrónicos; Elementos de protección para dispositivos electrónicos; Circuitos de acondicionamiento de señal y filtrado; Fuentes de alimentación lineales y conmutadas; Consideraciones de diseño de circuitos mixtos (analógicos – digitales); Circuitos integrados de aplicaciones específicas; Circuitos de manejo de potencia.
Unidad 4	Sistemas embebidos Revisión de sistemas embebidos; Comparativa entre la programación de sistemas embebidos con y sin sistemas operativos de tiempo real; Sistemas operativos de tiempo real vs Linux embebido; Requerimientos de hardware para el uso de sistemas operativas en sistemas embebidos; Técnicas de optimización de

	código; Control de versiones; Software de generación de documentación.
Unidad 5	Software de aplicaciones Introducción al uso de software en conjunto con dispositivos electrónicos; Comparativa de softwares de programación; Repaso general de aspectos de programación y programación orientada a objetos; Diseño básico de interfaz de software en computadora personal; Uso de puertos de comunicación para adquisición de datos/señales; Comunicaciones sobre redes de computadoras.
Unidad 6	Diseño y manufacturabilidad de dispositivos electrónicos Herramientas para simulación para sistemas electrónicos; Diseño avanzado de circuitos impresos: revisión de elementos básicos de un circuito impreso, aspectos de diseño para compatibilidad electromagnética, diseños multicapas, líneas de impedancia controlada, pares diferenciales para interfaces USB y Ethernet; Elementos de una línea de montaje dispositivos electrónicos; Aspectos de diseño en función del proceso de fabricación; Ensayos de validación de dispositivos electrónicos; Documentación.
Unidad 7	Escritura científica Definición del discurso científico y sus características; Rasgos discursivos; La importancia de la publicación; El articulo científico; Las revistas científicas; Secciones de un artículo científico; Estructuras posibles del articulo científico; Introducción; Conceptualización, descripción, estado de la cuestión, hipótesis, objetivos; Materiales y métodos; Resultados; Discusión; Conclusión.

Planificación de	e actividades				
Semana	Clase	Actividad	Tipo	Duración	Unidad
Semana 1	Clase 1	Exposición oral	Teórica	4hs	Unidad N1
Semana 2	Clase 2	Exposición oral	Teórica	4hs	Unidad N2
Semana 3	Clase 3	Exposición oral	Teórica	4hs	Unidad N3
Semana 4	Clase 4	Exposición oral	Teórica	4hs	Unidad N4
		Laboratorio de	Practica		
		optimización			
Semana 5	Clase 5	Control de	Practica	4hs	-
		proyecto			
Semana 6	Clase 6	Exposición oral	Teórica	4hs	Unidad N5
		Laboratorio	Practica		
		sobre diseño			
		de interfaces			
Semana 7	Clase 7	Exposición oral	Teórica	4hs	Unidad N5
		Laboratorio	Practica		
		sobre diseño			
		de interfaces			

Semana 8	Clase 8	Evaluación	-	-	-
Semana 9	Clase 9				
Semana 10	Clase 10	Exposición oral	Teórica	4hs	Unidad N6
		Laboratorio	Practica		
		sobre diseño			
		de dispositivos			
Semana 11	Clase 11	Exposición oral	Teórica	4hs	Unidad N6
		Laboratorio	Practica		
		sobre diseño			
		de dispositivos			
Semana 12	Clase 12	Exposición oral	Teórica	4hs	Unidad N7
Semana 13	Clase 13	Control de	Practica	4hs	-
		proyecto			
Semana 14	Clase 14	Exposición oral	Teórica	4hs	Unidad N7
		Taller sobre	Practica		
		escritura			
		científica			
Semana 15	Clase 15	Evaluación	-	-	-
Semana 16	Clase 16	Recuperatorio	-	-	-

Evaluación

Descripción del proceso evaluativo desarrollado por la catedra

"Integración tecnológica IV" obra de puente entre las cátedras de "Gestión de proyecto" y "Proyecto integrador". En esta se consolidarán los temas tratados en las distintas cátedras previas con el fin de comenzar a trabajar en proyecto final. Del alumno se evaluarán tanto competencias tecnológicas como sociales, políticas y actitudinales, lo cual se realizará por medio de: analizar su desempeño y participación en las clases teóricas, trabajos prácticos y/o trabajos de laboratorio, y dos evaluaciones (con un recuperatorios). Las evaluaciones, y el correspondiente recuperatorio, serán la presentación de trabajos encargados por la catedra y su correspondiente defensa. Dichos trabajos tendrán relación directa con el proyecto de final de carrera seleccionado en "Gestión de Proyecto" y el cual deberá ser finalizado en "Proyecto integrador". Así mismo, los temas evaluados en cada instancia estarán alineados con los temas detallados en las unidades del programa analítico, las competencias a desarrollar en la catedra y el cronograma de dicho periodo.

Primera evaluación	Semana 8	Presentación -	Duración: 3hs,
		Defensa oral	horario: 19:00hs
Segunda evaluación	Semana 15	Presentación -	Duración: 3hs,
		Defensa oral	horario: 19:00hs
Recuperatorio	Semana 16	Presentación -	Duración: 3hs,
		Defensa oral	horario: 19:00hs

Bibliografía obliga	atoria			
Titulo	Autor	Editorial	Edición	Año
Desarrollo De	Tomás	ALPHA	1ra	2022
Interfaces	Domínguez	EDITORIAL		
Gráficas En	Mínguez	MARCOMBO		
Python 3 Con				
Tkinter				

PCB Design and Layout	Roger HU	Independently Published	1ra	2019
Fundamentals				
for EMC				
Hablemos	Marco Antonio	Asociación	1ra	2019
Embebido: Guía	Aceves	Mexicana De		
para Diseñar	Fernández	Software		
Sistemas		Embebido		
Embebidos				
The Wireless	Daniel Chew	IEEE Press Wiley	1ra	2019
Internet of				
Things: A Guide				
to the Lower				
Layers				

Bibliografía compl	ementaria recomend	lada		
Titulo	Autor	Editorial	Edición	Año
Diseño y	Pareja; Miguel	Alfaomega	1ra	2010
Desarrollo de				
Circuitos				
Impresos con				
Kicad				
PROGRAMACIÓN	Gustavo Galeano	ALPHA	1ra	2009
DE SISTEMAS		EDITORIAL		
EMBEBIDOS EN				
С				
A Beginner's	Ariel	ARM Education	1ra	2022
Guide to	Lutenberg, Pablo	Media		
Designing	Gomez , Eric			
Embedded	Pernia			
System				
Applications on				
Arm Cortex-M				
Microcontrollers				
Operating Systems	Wim	ARM Education	1ra	2019
Foundations with	Vanderbauwhede,	Media		
Linux on the	Jeremy Singer			
Raspberry Pi				

Otros recursos ob	oligatorios
Nombre	

Otros recursos co	mplementarios
Nombre	