

CÓDIGO ASIGNATURA 632

DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas

ASIGNATURA: Ingeniería de Software Ingeniería en Informática

Año: 2010 Anual

1. OBJETIVOS

La materia Ingeniería de Software se propone proveer al alumno de conocimientos teóricos sobre temas de avanzada en la Ingeniería de Software, que serán desarrollados en profundidad durante toda la cursada, generando una síntesis de los conocimientos que el alumno ha recibido a lo largo de la carrera. Asimismo, se propone el desarrollo de trabajos prácticos de aplicación profesional de modo tal de marcar una fuerte aplicación práctica de los conocimientos y el desarrollo de trabajo en equipos.

Desde esta perspectiva, los objetivos de la asignatura son que el alumno logre:

- ✓ Analizar y discutir los fundamentos de la Ingeniería de Software como una disciplina científica.
- ✓ Definir sus alcances, limitaciones y ejes problemáticos.
- ✓ Conocer los diferentes modelos de proceso software y los diferentes modelos de ciclo de vida del producto. Metodologías clásicas y métodos ágiles.
- ✓ Analizar el marco de la Gestión de Proyectos de desarrollo software.
- ✓ Aplicar las diferentes metodologías, técnicas y herramientas en la Gestión de Proyectos.
- ✓ Conocer y aplicar políticas de Gestión de Configuración del software.
- ✓ Conocer y aplicar políticas de Gestión de Calidad de software.
- ✓ Conocer y aplicar métricas de Calidad de software
- ✓ Conocer las nuevas tendencias sobre la ingeniería de software.

2. CLASIFICACIÓN DE LA ACTIVIDAD CURRICULAR, FORMACIÓN PRÁCTICA Y CARGA HORARIA

2.1

	Carga horaria en horas reloj
Bloque de Ciencias Básicas	
Bloque de Tecnologías Básicas	
Bloque de Tecnologías Aplicadas	4
Bloque de Complementarias	
Otros Contenidos	
Carga horaria total de la actividad curricular	

1

2.2

Disciplina	Carga Horaria
Matemática	
Física	
Química	
Sistemas de representación y fundamentos de informática	
Biología	
Otros (ciencia de la tierra, geología, etc.)	
Total	

2.3

Formación Práctica							
Formación Resolución de pro- Experimental blemas de ingeniería proyecto y diseño supervisada T							

2.4

Carga horaria semanal	4
Carga horaria semanal dedicada a la formación práctica	2

3. CONTENIDOS

Proceso de desarrollo software. Modelos de Ciclo de vida. Métodos ágiles. Gestión de proyectos. Desarrollo de productos software. Planificación, seguimiento y control de proyectos. Métricas y Modelos de estimación. Técnicas y herramientas de Gestión de Proyectos. Modelos de Calidad de Software. Estándares de Proceso. Métricas de calidad de procesos. Métricas de calidad de producto. Políticas de Calidad. Gestión de la Configuración del software. Herramientas de configuración. Análisis de riesgos.

<u>Unidad 1. Definición de la Ingeniería del Software</u>

Desarrollo de la informática como disciplina científica. Alcances e implicaciones de la Ciencia, la Técnica y la Ingeniería. Orígenes de la producción de software. Fundamentos científicos de la Ingeniería del software. Desarrollo tecnológico. Conceptos de Organización y de Proceso. Características del proceso software y de la producción industrial. Proceso frente a producto. Metodologías tradicionales vs. Metodologías ágiles. Estado de la construcción del software.

Unidad 2. Proceso Software y Ciclos de Vida

Proceso de construcción de software. Definición de actividades del Proceso. Estándares y Normas internacionales sobre Proceso software. Técnicas y metodología sobre madurez del proceso. Concepto de Ciclo de Vida. Modelos de ciclo de vida: modelo en cascada; cons-

trucción en cascada con mejora iterativa; modelo incremental; modelos con prototipo; ciclo de vida en espiral, win-win, modelos alternativos.

Unidad 3. Gestión de Proyectos

Conceptos de Proyecto y Gestión de Proyectos. Manejo de Recursos de un proyecto. Marco de la gestión de Proyectos. Confección del Plan de Proyecto. Sistemas de Control de Proyectos. Proceso de Gestión. Estimación de producto y de proceso software. Métricas, técnicas y métodos de estimación. Planificación de Proyectos de desarrollo. Actividades de seguimiento de Proyectos.

Unidad 4. Calidad del Software

Conceptos de Calidad de Producto y de Proceso. Modelos de Calidad de Software. Gestión de la Calidad del software. Garantía de Calidad. Normas y estándares Internacionales. Modelos de Madurez CMM - CMMI. Normas ISO de certificación. ISO 15504. ISO 90003. Modelo Competisoft. Conceptos de Configuración del Software. Gestión de la Configuración. Auditorías. Normas y estándares de Configuración. Auditoria y Peritaje.

PROGRAMA ANALÍTICO – CONTENIDOS PRÁCTICOS

Listado de trabajos prácticos a realizar

- Práctico 1. Cuadro comparativo de Modelos de Ciclo de Vida Software
- Práctico 2. Resolución del problema de selección de un modelo de ciclo de vida. Graficar de acuerdo a un caso real.
- Práctico 3. Construcción de un Mapa de Actividades.
- Práctico 4. Resolución de Estimación del Tamaño del software a desarrollar, aplicando la técnica de Puntos de Función.
- Práctico 5. Estimación del Esfuerzo del Proyecto. Cálculo aplicando COCOMOII y la herramienta en laboratorio.
- Práctico 6. Planificación del Proyecto utilizando herramientas de Planificación en laboratorio
- Práctico 7. Resolución en grupo de Análisis e Identificación de Riesgos del Proyecto.
- Práctico 8. Identificación de elementos de configuración del producto.
- Práctico 9. Aplicación de Modelos de Calidad a un caso real.
- Práctico 10. Definición de áreas y niveles del Modelo de madurez CMMI en una empresa.
- Práctico 11. Aplicación de Cuestionario. Evaluación en una empresa de la madurez.

4. BIBLIOGRAFÍA

Título	Autor (es)	Editorial	Año y lugar de edición	Ejemplares disponibles Biblioteca
Capability Maturity Model	Inte-			
gration for Development	Software Enginee-	Carnegie Mellon		
(CMMI-DEV), Version 1.2	. ring Institute.	University.	2006, USA.	

Criteria for Selecting Software Process Models	Davis, A., Alexander,L.	COMPSAC, SEI. Carnegie Mellon University	2004, USA.
Introducción al Proceso Software Personal,	Humprey	Addison Wesley,	2001, USA
IEEE 1074. Standard for Developing Software Life Cycle Processes,	IEEE Standard	IEEE Standard	2002, USA
El proceso unificado de desa- rrollo de software	Jackobson, Rum- bough, Booch,	Addison Wesley,	1999, Madrid
El proceso UML de desarrollo	Jackobson, Rum- bough, Booch,	Addison Wesley,	2001, Madrid
Fábricas de Software: experiencias, tecnologías y organizaciones	Oktaba, H.; Piatti- ni, M.	Ra-Ma.	2007, Madrid
Ingeniería de Software. Teoría y práctica.	Pfleeger, S.L.	Prentice Hall	2002, Buenos Aires
PMBok PM Body of Knowl- edge	Project Manage- ment Institute	Project Mana- gement Institute 4° Ed.	2008, USA.
Ingeniería del Software.	Sommerville,I.	Addison Wesley	2005, Buenos Aires.
Ingeniería del Software, Un enfoque práctico.	Pressman, R.	McGraw-Hill, 6° Ed.	2006, Buenos Aires.
Agile & Iterative Development. A Manager's Guide.	Larman,C.	Addison Wesley,	2004, Buenos Aires.
La Organización Creadora de Conocimiento.	Nonaka, I. Takeu- chi, H.	Oxford University Press,	1999, México
ISO/IEC 90003. Quality management and quality assurance standards.	International Orga- nisation for Stan- dardization	International Organisation for Standardization	2004, USA
ISO/IEC 9001. Quality management systems	International Orga- nisation for Stan- dardization	International Organisation for Standardization	2008, USA

5. DESCRIPCIÓN DE ACTIVIDAD CURRICULAR 5.1) MODALIDAD DE ENSEÑANZA EMPLEADA

El dictado de la materia se dividirá en clases teóricas, clases prácticas y talleres de laboratorios para la realización de trabajos prácticos.

En las clases teóricas se desarrollarán los contenidos teóricos establecidos en el programa analítico. El desarrollo de las actividades se realizará mediante sesiones expositivas. Los alumnos trabajarán con el material preparado por el docente y la bibliografía definida.

En las clases prácticas se guiará a los alumnos en la resolución de problemas que tienen como finalidad la fijación de los conocimientos teóricos trabajados y será inducido a trabajar en equipo. Las guías de trabajos prácticos estarán disponibles con anterioridad a la fecha de realización de cada uno de ellos. Los trabajos prácticos se desarrollarán en el aula o en laboratorio con el uso herramientas informáticas como soporte, de acuerdo a la temática propuesta en cada uno. Se prevé una parte del desarrollo de cada práctico en la clase, donde se resolverán

las consultas y su finalización fuera del horario de clase, para lo cual deberán realizarse las consultas, vía mail.

5.2) MATERIALES DIDÁCTICOS NECESARIOS

Equipamiento de Laboratorio

Proyector

Herramienta de Estimación COCOMO II GNU/Linux

Herramienta de Planificación Microsoft Project

Microsoft Team System

Herramienta de Gestión de Configuración

6. EVALUACIÓN

La modalidad de evaluación de la materia es por Promoción. Para aprobar la materia, los alumnos deberán aprobar las siguientes instancias de evaluación.

- 2 (dos) examen parcial
- 1 (un) Trabajo Práctico Final (TPF), escrito y con defensa oral.

Sobre los parciales, habrá una (1) instancia de recuperación del parcial.

Sobre el TPF, se irá trabajando a lo largo de la cursada y para su defensa oral habrá una (1) instancia de recuperación.

7. COMPOSICIÓN DEL EQUIPO DOCENTE ACTUAL

7.1 Responsable a cargo de la actividad curricular: Ing. Marcelo Estayno

7.2) PROFESORES

,				Dedicación en
	Grado académico	Cargo		horas semanales al
Apellido y Nombre	máximo	Docente	Situación	cargo
Mon, Alicia	Doctora	Adjunta	Regular	16
Gigante, Nora	Magister	Adjunta	Regular	16

Cantidad total de profesores: 2

7.3) AUXILIARES GRADUADOS

			Dedicación en
			horas semana-
Apellido y Nombre	Grado académico máximo	Cargo Docente	les al cargo
Arancio, Andrea	Magister	JTP	4

Figueroa, Claudio	Ingeniero	Ayudante	4
Miguetti, J. Pablo	Ingeniero	Ayudante	4

Cantidad total de auxiliares: 3

7.4) AUXILIARES NO GRADUADOS

		Dedicación					
	Menor o igual	Menor o igual Entre 10 y Entre 20 y Entre 30 y Igual o mayor					
	a 9 horas	19 horas	29 horas	39 horas	a 40 horas	Total	
Auxiliares no							
graduados							
Otros							

		Designación					
	Reg	Regulares Interinos Contratados					
	Rentados	Ad Honorem	Rentados Ad Honorem		Rentados	Total	
Auxiliares no graduados							
Otros							

8. ALUMNOS

C: Cursantes por primera vez

R: Recursantes

8.1) TOTAL DE ALUMNOS QUE CURSARON LA ACTIVIDAD CURRICULAR

Año	2002		2003		2004		2005	
	С	R	С	R	С	R	С	R
Inscriptos								
Aprobaron la cursada								
Promocionaron								

Año	20	06	20	07	20	80	20	09
	С	R	С	R	O	R	O	R
Inscriptos								
Aprobaron la cursada								
Promocionaron								

8.2) Alumnos que cursaron la asignatura discriminados por carrera (si corresponde)

,									
Denominación de	Plan de Estu-								
la carrera	dios	2002	2003	2004	2005	2006	2007	2008	2009
Ing. Informática									
Ing. Electrónica									
Ing. Industrial									

8.3) TOTAL DE ALUMNOS INVOLUCRADOS EN EXÁMENES FINALES

AÑO	2002	2003	2004	2005	2006	2007	2008	2009
Alumnos que rindieron								
final								
Aprobaron								

8.4) Alumnos que rindieron la asignatura discriminados por carrera (si corresponde)

Denominación de la carrera	Plan de Estu- dios	2002	2003	2004	2005	2006	2007	2008	2009
Ing. Informática	uioo	2002	2000	2001	2000	2000	2001	2000	2000
Ing. Electrónica									
Ing. Industrial									

9. CANTIDAD DE COMISIONES

Turno	Cantidad de Comisiones	Promedio alumnos por comisión
Mañana		
Tarde		
Noche	2	50

10. SUFICIENCIA Y ADECUACION DE LOS ÁMBITOS

Los ámbitos de curso y laboratorios, son suficientes y resultan adecuados para la cantidad de alumnos.

11. INSCRIPCIÓN Y PROMOCIÓN DE ALUMNOS COMPLETAR

12. EVALUACIÓN CAPACIDAD DE CATEDRA

El equipo de cátedra es altamente capacitado con la formación de grado y posgrado en el área específica, lo que implica una adecuada formación para el dictado de la materia.

13. ACCIONES, REUNIONES, COMISIONES

La cátedra realiza dos reuniones generales por año y reuniones periódicas para el seguimiento de las comisiones y de los proyectos de investigación vinculados.

14. CALENDARIO DE ACTIVIDADES (semanas a planificar: cursada anual 52 semanas, cursada cuatrimestral 26 semanas)

Nº de Clase	Semana de Clase	Unidad Temática o Actividad
		Unidad 1. Definición de la Ingeniería
		del Software. Alcances e implicacio-
1		nes de la Ciencia, la Técnica y la In-

1	anioría
	geniería
	Unidad 1. Definición de la Ingeniería
	del Software. Características del pro-
2	ceso software.
	Unidad 1. Proceso software y ciclos
	de vida. Modelos de ciclo de vida de
3	producto.
	Unidad 2. Proceso Software y Ciclos
4	de Vida. Conceptos de Proyecto
	Unidad 3. Gestión de Proyectos. Acti-
5	vidades críticas de la Gestión
	Unidad 3. Gestión de Proyectos. Téc-
6	nicas de Estimación
-	Unidad 3. Gestión de Proyectos. Mo-
7	delos de estimación.
·	Unidad 3. Gestión de Proyectos. Apli-
8	cación de herramientas de estimación
	Unidad 3. Gestión de Proyectos. Pla-
9	nificación
3	Unidad 3. Gestión de Proyectos.
10	Herramientas de Planificación
10	
	Unidad 3. Gestión de Proyectos. Aná-
11	lisis de riesgos.
	Unidad 3. Gestión de Proyectos. Ges-
12	tión de Riesgos
13	1° parcial
	Trabajo integrador. Resolución de
14	práctica en grupo
	Trabajo integrador. Resolución de
15	práctica en grupo
16	Recuperatorio de parcial
	Dirección de Proyectos. Tecnologías
17	de la Información
	Dirección de Proyectos. Marco de la
18	Dirección.
	Calidad de software. Calidad de Pro-
19	ducto y de Proceso
	Gestión de Calidad. Calidad de Pro-
20	ceso
21	Gestión de Calidad. Estándares.
	Gestión de Calidad. Modelos de Ma-
22	durez
	Gestión de Calidad. Normas de certi-
23	ficación.
20	Gestión de Calidad. Implementación
24	·
24	en empresas
25	Calidad de producto software. Modelos

26	Calidad de producto software. Atributos
27	Calidad de producto software. Métricas
28	Implementación de modelos a productos
29	Gestión de Configuración del software
30	Gestión de Configuración del software. Estándares.
31	Gestión de Configuración del software. Herramientas
32	2° Parcial
33	Trabajo Practico integrador en grupo
34	Trabajo Practico integrador en grupo
35	Recuperatorio de parcial
36	Recuperatorio de parcial

INFORMACIÓN PROPIA CÁTEDRA

15. REUNIOINES DE CÁTEDRA (2 X AÑO)
16. GUIAS DE TP (TODAS)
17. APUNTES ELABORADOS POR LA CÁTEDRA
18. EJEMPLOS DE TP DE LOS ALUMNOS
19. EJEMPLOS DE PARCIALES TOMADOS
20. PRÁCTICA FORMACIÓN EXPERIMENTAL
21. PRÁCTICA RESOL. PROBL. ING.
22. PRÁCTICA PROYECTO Y DISEÑO
23. PRÁCTICA SUPERV. EN SECT. PRODUCTIVOS

24. DOCENTES AFECTADOS A INVESTIGACIÓN

Apellido y Nombre del Docen- te	Tipo de Proyecto	Cod. De Proyecto asignado por el DIIT	Nombre del Proyecto	Fecha de Inicio	Fecha de Finaliza- ción
Estayno, Marcelo	PICD	55-C101	Desarrollo de Modelos para la Evaluación de Calidad de Proceso	01-01-2009	31-12-2010
Mon, Alicia	PICD	55-C101	Desarrollo de Modelos para la Evaluación de Calidad de de Calidad	01-01-2009	31-12-2010
Arancio, Andrea	PICD	55-C101	Desarrollo de Modelos para la Evaluación de Calidad de	01-01-2009	31-12-2010
Gigante, Nora	PICD				

25. ACLARACIÓN, CARGO Y FECHA

"Certifico que el presente programa de estudios de la asignaturaIngeniería de Softwa-
re es el vigente para el ciclo lectivo2010, guarda consistencia con los con-
tenidos mínimos del plan de estudios y se encuentra convenientemente actualizado".

Estayno, Marcelo Jefe de Cátedra Marzo 2010
Firma Aclaración Cargo Fecha