

CÓDIGO ASIGNATURA

1034

DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas

ASIGNATURA: Introducción a los Sistemas Digitales Año 2014

OBJETIVOS:

Son objetivos específicos de la asignatura que, tras la aprobación del curso, los alumnos sean capaces de:

- Conocer, comprender y analizar el principio de funcionamiento, campos de aplicaciones, y las características más importantes (parámetros funcionales; limitaciones) de los circuitos combinacionales de aplicaciones generales de pequeña y mediana escala de integración.
- 2) Conocer, comprender y aplicar las técnicas, métodos y procedimientos que se utilizan en el análisis y el diseño de circuitos combinacionales o sistemas digitales simples basados en dispositivos lógicos estándar de aplicaciones generales, incluyendo entre ellas la obtención de la documentación técnica requerida, las herramientas matemáticas para el estudio de los sistemas digitales, la selección de componentes y la consideración y evaluación de alternativas.
- 3) Conocer las estructuras y sentencias básicas de la programación en Lenguajes Descriptivos de Hardware, haciendo incapie en el lenguaje de alto nivel VHDL.

CONTENIDOS MÍNIMOS:

Álgebra de Conmutacion. Circuitos Combinacionales con compuertas y con circuitos integrados de MSI. Memorias semiconductoras ROM. Introducción a las Familias Lógicas, parámetros. Nociones sobre Lenguajes descriptores de hardware.

PROGRAMA ANALÍTICO. CONTENIDOS TEÓRICOS Y PRÁCTICOS:

Unidad 1 - Códigos

Repaso y ejercitación Códigos continuos y cíclicos (Gray). Códigos para caracteres de texto (ASCII). Código para magnitudes binarias. Suma y resta de magnitudes binarias. Códigos para enteros binarios (signo y magnitud, complemento a 2, binario desplazado). Suma y resta de binarios enteros representados en el código complemento a 2. Códigos para números en coma flotante (IEEE). Códigos binarios para números decimales (BCD natural, Aiken, Exceso 3, 2 de 5). Códigos detectores y correctores de errores. Distancia mínima 2, 3 y 4. Códigos de Hamming.

1

Unidad 2 - Álgebra de conmutación

Variables y funciones lógicas. Lógica de contactos. Postulados del álgebra de conmutación (o de Boole). Principio de dualidad. Principales Teoremas. Teorema general de los minitérminos y de los maxitérminos. Leyes de De Morgan y de Shannon. Tablas de verdad, diagramas de Venn, expresiones canónicas, relación entre ellas. Simplificación de funciones lógicas. El mapa de Karnaugh de hasta 5 variables. Su uso para representar y simplificar funciones lógicas. Expresiones tipo producto de sumas y suma de productos. Redundancias. Nociones sobre métodos computacionales para la simplificación de funciones (WinLogiLab, Espreso,).

Unidad 3 - Lógica combinacional con compuertas

Distintos tipos de compuertas: AND, OR, INVERT, NAND, NOR, XOR, XNOR, BUFFER, y de transmisión. Simbologías. Realización de circuitos en dos niveles. Formas degeneradas de 2 niveles. Riesgos estáticos, dinámicos y análisis para su supresión. Aplicaciones. Circuitos integrados, distintas escalas de integración. Introducción a las familias lógicas. Características generales de TTL y CMOS: tensión de alimentación, niveles de tensión y de corriente, consumo estático y dinámico, tiempos de conmutación, calculo de la máxima frecuencia de operación. Configuraciones de entradas (convencionales y Schmidt Trigger) y salidas (Totem Pole, Colector Abierto, 3- Estados) de las compuertas. Consideraciones de uso. Empleo de hojas de datos.

Unidad 4 – Introducción a los Lenguajes Descriptivos de Hardware

Historia, Generalidades de los HDL, lenguaje descriptivo de alto nivel VHDL. Distintas formas de descripción, Entidad y Arquitectura. Descripción por comportamiento. Asignaciones concurrentes simples. Uso del simulador (Quartus II, Symphony). Ejemplos y aplicaciones.

Unidad 5 - Lógica combinacional con integrados MSI

Filosofía del diseño con dispositivos lógicos estándar de integración media (MSI). Manejo de códigos: decodificadores, codificadores, y árboles de paridad. Control del flujo de señales: multiplexores (analógicos y digitales) y demultiplexores (analógicos y digitales). Multiplexación y demultiplexación distribuidas. Cálculo aritmético: comparadores de magnitudes y de números enteros, sumadores y sumadores-restadores binarios, sumadores y sumadores-restadores decimales. Descripción de los dispositivos de MSI con VHDL mediante asignaciones concurrentes condicionales y de selección. Descripción de circuitos combinacionales.

Unidad 6 - Memorias Semiconductoras

Generalidades sobre memorias ROM y RAM. Introducción a las memorias de únicamente lectura programables (PROM). Características básicas de EPROM, E2PROM y FLASH. Diseño de circuitos lógicos utilizando memorias PROM.

Unidad 7 - Estructuras de Buses

Generalidades. Estructura básica de buses. Estructuras de buses con compuertas con salidas de colector abierto y de 3 estados. Comunicación paralelo y serie entre dispositivos de MSI a través de estructuras de buses unifilares y multifilares.

BIBLIOGRAFIA:

BIBLIOGRAFÍA BASICA

La Dirección de la Cátedra sugiere un libro que cubre, con la debida extensión y profundidad, las diferentes unidades que conforman la materia, excluyendo la parte de introducción a VHDL, que menciona el Programa Analítico. El libro cuyo título es: Técnicas Digitales, Dispositivos, Circuitos, Diseño y Aplicaciones, 2da. Edición, siendo el autor, el Ing. Jorge Sinderman y es editado por

Nueva Librería, Marzo del 2007, ISBN 978-987-1104-51-2.

Existen en castellano varios buenos libros sobre la materia que pueden utilizarse en reemplazo de la publicación recién mencionada. Ellos cubren, si no todo, gran parte del contenido de la materia. Y algunos de los temas que tratan lo hacen con más profundidad, circunstancia que podría ser aprovechada por los alumnos que deseasen profundizar algún tema específico con vistas a su actividad profesional. Algunos de esos libros son:

John F. WAKERLY DISEÑO DIGITAL - PRINCIPIOS Y PRÁCTICAS Pearson Educación, México 2005.

Es la traducción de la 3ª. edición del libro original en inglés, hay una versión en castellano.

Enrique MANDADO, Yago MANDADO SISTEMAS ELECTRONICOS DIGITALES, Tomo 1 9ª edición – Alfaomega y Marcombo ediciones técnicas

Thomas L. FLOYD FUNDAMENTOS DE TECNICAS DIGITALES 7ta.. Edición – Prentice Hall

Incluye el tratamiento completo de la asignatura, haciendo hincapié en los ejemplos de lógica combinacional .

L. CUESTA - A. GIL PADILLA – F. REMIRO ELECTRONICA DIGITAL Mc Graw Hill (serie Schaum)

Volnei A. PEDRONI CIRCUIT DESIGN WITH VHDL TLFeBOOK, Edición año 2004

Libro muy conceptual, sumamente claro, trata muy bien el tema librerías, es claro en las descripciones de circuitos que realiza y los ejemplos están muy bien trabajados; da varias soluciones para un mismo problema. El texto es en ingles pero de una lectura muy sencilla .

Apuntes del Ing. Jorge Sinderman para Técnicas Digitales I sobre VHDL

Descripción VHDL de Circuitos Lógicos Combinacionales Editado por el CEIT – UTN FRBA (R3GT1)

BIBLIOGRAFÍA COMPLEMENTARIA

En una materia como la presente, que trata del análisis y el diseño de circuitos digitales, resulta muy imprescindible la consulta de las hojas de datos de los distintos fabricantes de circuitos integrados digitales . Por ello, la bibliografía básica ya citada debe complementarse con la disponibilidad, para consulta, de los referidos manuales de, por ejemplo para el caso de los dispositivos lógicos estándar SSI y MSI: On Semiconductor (ex Motorola), Fairchild Semiconductor, Texas Instruments, Philips, Hitachi, etc. Y para el caso de PALs y GALs: Lattice, Cypress, etc.

En caso de no contar con estos manuales, los alumnos podrán obtener la información requerida en las páginas web que mantienen los fabricantes, y donde se encuentran sus hojas de datos. Algunas de dichas páginas web son:

www.onsemi.com www.fairchildsemi.com

www.ti.com (Texas Instruments) www.semiconductors.com (Philips) www.halsp.hitachi.com www.latticesemi.com www.cypress.com

En la actualidad los alumnos pueden consultar la página web de ALL DATA SHEET, que brinda gran cantidad de archivos pdf de los distintos componentes que se usan en el área digital y analógico :

www.alldatasheet.com

GUIAS DE CLASE:

La asignatura cuenta con guías de clase que, por ahora, se les envían a los alumnos vía correo electrónico. Las mismas son utilizadas como apoyo, por los alumnos, en el desarrollo de las clases teóricas; las guías cuentan con todos los conceptos básicos de cada uno de los temas y se desarrollan los distintos métodos de diseño que se plantean en cada unidad temática

GUIAS DE TRABAJOS PRACTICOS DE CLASE:

La asignatura cuenta con una Guía de Trabajos Prácticos de clase.

METODOLOGÍA DE ENSEÑANZA.

La metodología de la enseñanza-aprendizaje es teórico-práctica, pero entendiendo a ésta última, no solo como una mera aplicación de lo visto en teoría, sino como otro recurso didáctico para generar conocimiento significativo.

También en la metodología de enseñanza-aprendizaje, se debe tener en cuenta que *Introducción a los Sistemas Digitales* es una asignatura perteneciente al **Ciclo Básico Inicial** y por lo tanto el alumno debe recibir en la teoría los métodos de análisis y diseños de circuitos lógicos combinacionales y en la práctica se la debe orientar a la aplicación de esos métodos para la resolución de problemas.

Teoría

Para esta actividad, cuya extensión es el 65%, se mantiene el esquema clásico de la exposición oral por parte del profesor, compuesto de *introducción* (clarificación de puntos de la clase anterior, vinculación con los de la corriente clase, importancia de estos últimos, motivación de los alumnos), *desarrollo*, y *conclusión* (resumen de los principales puntos vistos, temas pendientes para una próxima clase).

Se reconocen, por supuesto, las limitaciones que ofrecen las clases expositivas, las que se trata de corregir. Las limitaciones con que nos podemos encontrar son :

- ◆ Proporcionan escasas oportunidades para que el alumno reciba la confirmación de la corrección o incorrección de lo que está aprendiendo.
- ♦ Contribuyen a que el alumno adopte una actitud pasiva ante el aprendizaje, y limite su papel al de mero receptor de informaciones.
- ◆ Pueden hacer que el alumno se limite a captar y memorizar sólo la forma verbal, sin llegar a comprender su significado real (aprendizaje memorístico no significativo).

Es por esto último que la exposición del profesor debe ser completada con el refuerzo que aporten otros recursos didácticos que aumentan su eficacia, a través de estimular en el alumno actividades reflexivas que lo lleven a la comprensión. Por eso, las clases teóricas, además de la exposición, incluyen breves intervalos con interrogatorios y discusión dirigida, y también demostraciones.

- Los *interrogatorios* (de respuesta voluntaria) permiten controlar si se comprendió lo expuesto; las buenas respuestas son inmediatamente elogiadas, mientras que las fallidas se aprecian como un recurso didáctico para reconocer aquellos aspectos sobre los que se deben reforzar conceptos .
- Las *discusiones dirigidas* (microseminarios) se emplean para arribar a conclusiones, analizar generalizaciones, casos particulares o excepciones a las reglas, criterios para seleccionar entre alternativas viables y, en general, para darle un breve tratamiento a un tema controvertido y para estimular el pensamiento reflexivo de los alumnos.
- Las demostraciones de procedimientos favorecen la comprensión de los mismos.

El diálogo se ve también favorecido por una plena aceptación de las preguntas de los alumnos, las que se alientan y a las que se da apropiada e inmediata respuesta (a menos que por su falta de pertinencia o por la extensión que demande responderlas justifique dar la misma al cabo de la clase).

Es interesante, durante el dictado de la clase teórica, el uso de un importante recurso didáctico como un cañón de imágenes, con ellos se pueden proyectar diapositivas referentes a las temas que se abarcan en las distintas clases teóricas. Este recurso es apropiado para mostrar tablas de verdad, mapas de Karnaught, formas de onda y circuitos complejos que pueden ser dibujados y mostrados con mayor precisión; es conveniente que

el uso de estos recursos didácticos se vea complementado por guías de clase que previamente, a la clase teórica, deben recibir los alumnos .

Se trata también de crear un ambiente de clase motivador, reconociendo la importancia que este clima de aula tiene en la enseñanza. Participa también de este objetivo la consulta de la opinión de los alumnos respecto a temas susceptibles de ser consensuados, tales como fechas de parcial o la realización de clases especiales.

Práctica

Es importante la ejercitación práctica, ya que es la que permite que el nivel de comprensión que se haya alcanzado en el estudio teórico (fase de asimilación) ascienda a través de actividades mentales hasta alcanzar los niveles superiores de aplicación, análisis, síntesis, etc. (fase de acomodamiento) y resulta indudable que aumenta la estabilidad y calidad de la información aprendida inicialmente. La práctica permite que el nuevo aprendizaje se relacione significativamente y se integre a la estructura cognitiva del alumno, asegurando la funcionalidad de lo aprendido y evitando el conocimiento inerte.

La práctica no tiene toda la extensión que sería de esperar siendo el motivo las 16 clases con las que cuenta la materia para desarrollarse en el cuatrimestre. Los temas prácticos se profundizan en otra asignatura del Área Digital que es Técnicas Digitales I .

Esta actividad se realiza trabajando en grupo, entendiendo que las actividades socializadas implican un proceso interactivo de tipo mental y social que resulta estimulante para las mayorías de las personas, porque satisface necesidades sociales (intercambio, cooperación aceptación, tolerancia, respeto) y desarrolla habilidades sociales y el espíritu crítico. Las actividades prácticas consisten en trabajos prácticos de aula, según se describe a continuación. Cada trabajo práctico realizado exige aprobar el correspondiente informe grupal.

Los trabajos prácticos de aula consisten en la resolución de problemas que se realizan sobre la base de los enunciados que se proponen oportunamente. Estos son redactados por los Jefes de Trabajos Prácticos o los Ayudantes y controlados por los Docentes a cargos de los cursos y se redactan buscando que sean motivadores, típicos para el logro de alguna habilidad o destreza, y estimulantes para el pensamiento crítico y creador. Los problemas exigen la consulta de manuales de fabricantes y/o de las páginas web de los mismos en busca de información, para familiarizar a los alumnos con los productos comerciales de uso más frecuente y la estructura general de la información que sobre ellos proveen sus fabricantes. Constituyen ejemplos de trabajos prácticos de aula, por cobertura, orientación, profundidad y extensión, los enunciados de problemas con que la publicación de la Cátedra (citada en la bibliografía) cierra cada uno de sus capítulos.

Como la efectividad de la práctica es tanto mayor cuando más próxima resulta con relación al aprendizaje teórico que la fundamenta, los trabajos prácticos de aula se hacen en forma imbricada con las exposiciones teóricas, dentro de una misma clase o a mas tardar a la clase siguiente, haciendo que esta actividad práctica se realice tan pronto como los alumnos tengan los conocimientos para ello. Se considera que esta metodología no sólo mejora la calidad de la enseñanza, sino que aumenta la motivación intrínseca.

La proporción del *tiempo de clase* asignado a la realización de trabajos prácticos de aula es del orden del 35 %. El tiempo efectivo de realización de trabajos prácticos es mayor que el que surge de esta cifra, porque los problemas que se someten a los alumnos no pueden resolverse totalmente en el tiempo asignado en el aula, el que requiere ser complementado con tarea en el hogar. El tiempo de aula es utilizable por los alumnos para avanzar en la realización del práctico, la discusión grupal del enfoque o las alternativas, la

consulta con el profesor y, por este último, para realizar un seguimiento de la evolución del proceso enseñanza-aprendizaje.

Dado que la mayoría de los alumnos tiene acceso a computadoras personales y a programas tales como el Electronic Workbench, Protel, PSpice, B²Logic, etc. se los estimula para hacer uso de esos programas no sólo para dibujar los circuitos digitales que cada trabajo práctico requiere, sino también para simular su comportamiento. El editor de ecuaciones del procesador Word es el recomendado para la escritura de las expresiones lógicas. La práctica de laboratorio mas intensas se plantea en asignaturas del Area Digital como Técnicas Digitales II y III .

EXPERIENCIAS DE LABORATORIO, TALLER O TRABAJOS DE CAMPO

No se realizan experiencias de laboratorio en esta materia introductoria al estudio de las Técnicas Digitales .

USO DE COMPUTADORAS

Se utilizan en el Laboratorio de Electrónica en los trabajos prácticos de Álgebra de Boole, donde se trabaja con el soft libre WinLogicLab en su última versión y el B2Logic para la parte de Síntesis de Circuitos con Compuertas y MSI.

METODOLOGÍA DE EVALUACIÓN

En la primera clase del curso, se efectúa un relevamiento de ciertas características del alumnado para detectar aquellos alumnos que, aunque cumpliendo los prerrequisitos formales, pueden llegar a tener dificultades en su proceso de aprendizaje debido a que carecen de ciertos conocimientos necesarios. Este es el caso, por ejemplo, de quienes no son técnicos electrónicos y que por estar en el tercer cuatrimestre no han cursado ni Física II. Para estos casos se preparan clases especiales fuera de turno para intentar nivelar sus conocimientos.

A lo largo del curso, tanto en las clases teóricas pero especialmente durante la realización de los Trabajos Prácticos, se realiza un seguimiento personalizado de los alumnos a fin de evaluar la marcha del proceso enseñanza-aprendizaje. También contribuyen a este seguimiento los exámenes parciales, además de cumplir estos con su función de acreditación.

Para la aprobación de los trabajos prácticos, el alumno debe aprobar todos los informes de trabajos prácticos y los dos exámenes parciales.

La aprobación de los trabajos prácticos, seis durante el cuatrimestre es grupal, debiendo cada grupo presentar los correspondientes informes no más allá de 2 semanas tras la realización del trabajo práctico. De requerirse algún tipo de corrección, se concede para ello una semana adicional.

Los exámenes parciales son presenciales, escritos, individuales y sin material a la vista, consisten en la resolución de problemas y hay durante el cuatrimestre una sola posibilidad de recuperación que posee la misma característica que el parcial.

CALENDARIO DE ACTIVIDADES

UNIDAD TEMATICA	TRABAJO PRACTICO	No. de clases
1	TP1 - Códigos	2
2	TP2 - Algebra de Boole	2
3	TP3 - Circuitos Combinacionales con	3
	compuertas	
4		1
1er. parcial		1
5	TP4 - Circuitos Combinacionales con MSI	3,5
6	TP5 – Memorias ROM – Diseño	1
7		0,5
2°. Parcial		1
Clases de		1
reserva		
Total de		16
clases		

REGLAMENTO DE PROMOCIÓN

- 1) Se requiere una asistencia a clase no inferior al 75%. El incumplimiento de este requisito coloca al alumno en condición de ausente.
- 2) La asignatura se aprueba por régimen de promoción por exámenes parciales y recuperatorios.
 - 2.1) En el curso se tomarán 2 (dos) parciales
 - 2.2) Habrá 1 (una) instancias recuperatoria.
 - 2.3.1) Los exámenes parciales (y sus recuperatorios) se entenderán
- § aprobado cuando la calificación asignada en una escala de 0 (cero) a 10 (diez) resulte igual o superior a 7 puntos.
- § cursado cuando la calificación sea de 4, 5 ó 6 puntos. Estos parciales podrán ser recuperados.
- § aplazados cuando la calificación sea igual o menor a 3 puntos. Podrán ser recuperados
- § ausente cuando el alumno no obtenga calificación alguna en 1 (una) de las instancias de evaluación parcial.
- 2.3.2) La calificación asignada al examen recuperatorio, cualquiera sea el resultado, anula y reemplaza a todos los efectos, a la obtenida en el examen parcial que se recupera.
- 2.4.1) La asignatura se entenderá aprobada cuando se aprueben todos los exámenes parciales (en primera instancia o en los recuperatorios) y la nota de cada uno de ellos, así como el promedio de los mismos sea de 7 (siete) o más puntos.
- 2.4.2) Si la calificación final de la asignatura, calculada como promedio de los exámenes parciales (o recuperatorios) cursados (no aplazados) es de 4, 5 ó 6 puntos, o para el caso de tener un parcial aprobado y el otro cursado, la asignatura se entenderá como cursada, y podrá ser aprobada por examen final.
- 2.4.3) La asignatura se considerará aplazada cuando ocurran 2 (dos) aplazos en los parciales y/o sus recuperatorios; deberá ser cursada nuevamente.
- 2.5) Los exámenes finales serán teórico prácticos y tendrán carácter integrador de la materia, pudiendo incluir cualquier tema del programa.

La calificación necesaria para aprobar el examen final es de 4 (cuatro) puntos o más.

La validez de la asignatura cursada es de 5 (cinco) turnos consecutivos de examen final contados a partir del turno inmediato siguiente al período de cursado. Por tal motivo la situación académica del alumno deberá quedar definida el último día hábil de clases..

Extinguida la validez de la cursada la asignatura deberá cursarse nuevamente.

"Certifico que el presente programa de estudios de la asignatura Introducción a los Sistemas Digitales es el vigente para el ciclo lectivo 2014, guarda consistencia con los contenidos mínimos del plan de estudios y se encuentra convenientemente actualizado"

Firma Aclaración Cargo Fecha