Carrera INGENIERIA EN ELECTRONICA				
Asignatura [3694]-[Física III]				
Trayecto Ciencias Básicas				
Año académico 2023				
Responsable / jefe de catedra Ir	Responsable / jefe de catedra Ing. Nélida Mabel Agüero			
Carga horaria semanal 4hs	a horaria semanal 4hs Carga horaria total 64hs Créditos			
Modalidad: presencial				
Correlativas anteriores: [3690] Correlativas posteriores: [3706] [3717]				
Conocimientos necesarios Vectores: módulo, dirección. Suma y resta, Productos escalar y				

Conocimientos necesarios Vectores: módulo, dirección. Suma y resta, Productos escalar y vectorial. Conceptos básicos de trigonometría. Cálculo de derivadas e integrales. Resolución de sistemas de ecuaciones. Cinemática y dinámica.

Equipo docente			
Nombre Cargo Titulo			
Nélida Mabel Aguero	Adjunto	Ing. en Electrónica	
Darío J. Di Vito	Adjunto	Ing. en Electrónica	
Jonathan Musa	Ayudante	Ing. en Electrónica	

Descripción de la asignatura

Esta asignatura se basa en la rama de la Física que aborda los conceptos fundamentales de la electricidad y el magnetismo. Su aporte principal es introducir los conceptos básicos del electromagnetismo partiendo del estudio de la carga eléctrica y concluyendo con el análisis de circuitos elementales.

Metodología de enseñanza

Durante las clases se introducen los conceptos fundamentales de cada unidad aplicando los saberes previos de Física y Matemática para construir el nuevo conocimiento. En cada caso, se complementa con resolución de problemas y ejemplos de aplicación que se abordan a través de videos, proyección de diapositivas y/o experiencias demostrativas o de simulación para motivar la participación del alumno y mejorar la comprensión de los fenómenos. Esta tarea contribuirá a lograr en el estudiante, una mejor interpretación de la relación que existe entre el concepto físico, la interpretación matemática y el manejo de las unidades, permitiéndole así aunar estos aspectos y aprender a resolver debidamente problemas de la Física, como base de la ingeniería en general.

Las experiencias de Laboratorio y/o de simulación se desarrollarán en forma grupal. Estas actividades permiten: comprobar principios o emplear en forma experimental conocimientos científicos de la materia, manejar unidades, establecer relaciones e introducir al alumno en las técnicas de medición, interpretar resultados y adquirir manejo de los métodos operativos con equipos e instrumentos. Al finalizar el trabajo de laboratorio, los alumnos deberán confeccionar informes donde se les solicita incluir un marco teórico que relacione los procedimientos y resultados con los conceptos correspondientes.

A través de la plataforma MIeL, la cátedra habilita espacios para realizar consultas y pedidos de orientación acerca del desarrollo y presentación de las actividades de laboratorio y sobre los contenidos teóricos y prácticos de la cursada. En dicha plataforma, también cuentan con soporte digital de los contenidos, que los alumnos pueden consultar de manera asincrónica. Además, se habilitan espacios de consulta sincrónica (virtual y presencial) y formularios de autoevaluación al finalizar cada unidad.

Objetivos de aprendizaje

- La comprensión con profundidad de los fundamentos del Electromagnetismo.
- Que el alumno identifique y aplique los conocimientos teóricos necesarios para la resolución de problemas, en el aula y en los trabajos de laboratorio.
- La incorporación de vocabulario técnico, particularmente el de la Física.
- Introducir el uso adecuado del instrumental de laboratorio.
- Impulsar el debate y la reflexión crítica en la interpretación de los resultados obtenidos en las experiencias de laboratorio.

Contenidos mínimos

Fuerza eléctrica. Campo eléctrico. Ley de Gauss. Potencial eléctrico. Capacitores y dieléctricos. Corriente eléctrica. Ley de Ohm. Leyes de Kirchhoff. Transitorios RC serie. Fuerza magnética. Ley de Biot Savart. Ley de Ampere. Ley de Faraday Lenz. Inductancia - Circuito RL serie. Corriente alterna. RLC serie. Potencia.

Competencias a desarrollar

Genéricas

Desarrollo de una actitud profesional emprendedora.

Aprendizaje continuo.

Actuación profesional ética y responsable.

Comunicación efectiva.

Desempeño en equipos de trabajo.

Especificas

Identificación, formulación y resolución de problemas de ingeniería electrónica.

Programa analític	Programa analítico		
Unidad 1	Campo Eléctrico Carga eléctrica. Cuantización de la carga. Ley de Coulomb. Intensidad de campo eléctrico. Líneas de campo eléctrico. Cálculo del campo eléctrico para cargas concentradas y distribuidas. Movimiento de cargas en campos eléctricos. Dipolo eléctrico. Flujo del campo electrostático. Ley de Gauss. Electrones libres, conductores y aisladores, distribución de cargas. Campo entre placas paralelas.		
Unidad 2	Potencial Eléctrico y Capacidad Energía potencial eléctrica. Potencial eléctrico. Diferencia de potencial. Cálculo del potencial eléctrico para cargas concentradas y distribuidas.		

	Superficies equipotenciales. Capacitores. Energía acumulada en un capacitor. Asociación de capacitores. Dieléctricos, comportamiento molecular. Ley de Gauss generalizada.
Unidad 3	Electrodinámica y Circuitos de Corriente Continua Densidad e intensidad de corriente eléctrica, resistencia, resistividad, conductividad. Ley de Ohm. Fuerza electromotriz y resistencia Interna de un generador. Potencia y Energía eléctrica. Ley de Joule. Acoplamiento de resistencias. Leyes de Kirchhoff. Redes eléctricas. Circuitos R-C, Régimen transitorio y permanente.
Unidad 4	Campos Magnéticos Imanes. Fuerza ejercida por un campo magnético. Líneas de campo magnético. Fuentes del campo magnético (cargas en movimiento y corriente eléctrica). Ley de Biot Savart. Flujo magnético. Ley de Gauss para el campo magnético. Fuerza entre conductores paralelos. Ley de Ampere. Ley de Faraday. Ley de Lenz. Coeficiente de autoinducción y de Inducción mutua. Energía almacenada en el campo magnético. Circuitos R-L en régimen transitorio y Permanente.
Unidad 5	Circuitos de Corriente Alterna Fasores. Comportamiento de los circuitos excitados por ondas senoidales. Circuito resistivo puro, inductivo puro y capacitivo puro. Circuitos R-L-C en serie. Impedancia y Admitancia. Potencia.

Planificación d	Planificación de actividades				
Semana	Clase	Actividad	Tipo	Duración	Unidad
Semana 1	1	Fuerza eléctrica - Campo eléctrico	Clase teórico- práctica	4 hs	1
Semana 2	2	Ley de Gauss del Campo Eléctrico	Clase teórico- práctica	4 hs	1
Semana 3	3	Potencial eléctrico	Clase teórico- práctica	4 hs	2
Semana 4	4	Capacitores	Clase teórico- práctica	4 hs	2
Semana 5	5	Dieléctricos.	Clase teórico- práctica	4 hs	2
Semana 6	6	Corriente eléctrica - Ley de Ohm	Clase teórico- práctica	4 hs	з
Semana 7	7	Leyes de Kirchhoff - Transitorios RC serie	Teórico + Práctica de Laboratorio	4 hs	3

Semana 8	8	Fuerza	Clase teórico-	4 hs	4
		magnética	práctica		
Semana 9	9	1er. Parcial	Evaluación	3 hs	1, 2 y 3
Semana 10	10	Ley de Biot	Clase teórico-	4 hs	4
		Savart	práctica		
Semana 11	11	Ley de Ampere	Clase teórico-	4 hs	4
			práctica		
Semana 12	12	Ley de Faraday	Teórico +	4 hs	4
		Lenz.	Laboratorio		
			virtual		
Semana 13	13	Inductancia -	Clase teórico-	4 hs	4
		Transitorios RL	práctica		
		serie			
Semana 14	14	Corriente	Clase teórico-	4 hs	5
		alterna. RLC	práctica		
		serie -			
		Potencia			
Semana 15	15	Segundo	Evaluación	3 hs	4 y 5
		parcial			
Semana 16	16	Recuperatorio	Evaluación	3 hs	1 a 3 ó 4
		de parciales 1			y 5
		ó 2			

Evaluación

El proceso de evaluación consiste en dos exámenes parciales y un examen recuperatorio no integrador.

En el primer parcial se evaluarán las unidades 1, 2 y 3 por medio de actividades de aplicación práctica con justificación teórica de las resoluciones y preguntas del tipo verdadero o falso con justificación de las respuestas.

En el segundo parcial se evaluarán las unidades 4, 5 y 6, utilizando una metodología similar a la del primer parcial.

El examen recuperatorio corresponde a las unidades 1, 2 y 3 ó 4, 5 y 6, según sea del primer o segundo parcial respectivamente y su estructura es similar a la de los parciales.

En todas estas instancias, la aprobación de la evaluación requiere un porcentaje no menor al 40% del examen correctamente resuelto.

Primera evaluación	Semana 9	Examen escrito. Teoría y práctica	Duración, horario
Segunda evaluación	Semana 15	Examen escrito. Teoría y práctica	Duración, horario
Recuperatorio	Semana 16	Examen escrito. Teoría y práctica	Duración, horario

Bibliografía obligatoria				
Titulo	Autor	Editorial	Edición	Año
Física para la	Paul Tipler y	Física para la	5ta	2007
Ciencia y la	Gene Mosca	Ciencia y la		
Tecnología Vol.2		Tecnología Vol.2		
Física para	Serway y Jewett	Cengage	10ma	2018
ciencias e		Learning		
ingenierías Vol.2				
Física	Young Hugh D.	Pearson	14ta	2018
universitaria,	Sears Francis W.			
con física	Zemansky Mark			
moderna Vol.2	W.			
	David Halliday -	Compañía	5ta	2004
Física Vol.2	Robert Resnick -	Editorial		
risica vol.2	Kenneth S.	Continental,		
	Krane	S.A. De C.V.		

Bibliografía complementaria recomendada				
Titulo	Autor	Editorial	Edición	Año
Física para ciencias e ingenierías Vol.2	Giancoli Douglas C.	Pearson Educación	4ta	2008

Otros recursos obligatorios		
MleL	https://miel.unlam.edu.ar/	

Otros recursos complementarios			
Simulador Carga y	https://phet.colorado.edu/sims/html/charges-and-		
Campo eléctrico	fields/latest/charges-and-fields_es.html		
Simulador	https://phet.colorado.edu/en/simulations/capacitor-lab		
Capacitores			
Simulador Circuitos	https://phet.colorado.edu/es/simulations/circuit-construction-kit-ac		
eléctricos			
Simulador	https://phet.colorado.edu/es/simulations/faraday		
Laboratorio			
electromagnetismo			
Simuladores Varios	https://www.vascak.cz/#		